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Abstract

A new nonlinear thermo-mechanical model for heavily jointed rock masses is presented. 

The model describes poroelasticity, shear-enhaced compaction and brittle-ductile transition in

porous dry rocks. The basic input parameters in the model such as elastic moduli, tensile and 

compressive strength are expressed as functions of the reference porosity of the rock. These 

functions are based on empirical data for some types of rocks (limestones, sandstones). The 

model assumes that the media is isotropic. Effects of joints is modelled by scaling down the key 

model parameters. The scaling rules rely on empirical data but can also be found from direct 

comparison with the explicit simulation of jointed rock masses 

Keywords: geological material, rock, constitutive behaviour, yield condition, plastic 

collapse

1. Introduction

Modeling thermo-mechanical response of jointed rock presents a challenge even for 

small deformations. This is because both the joints and the rock may exhibit strongly non-linear 

mechanical response, anisotropy and rate dependence. Large-scale in situ tests are expensive and 

in some cases not possible. In Situ tests generally provide information on P-wave and S-wave 

velocities as well as the joint spacing but not on the failure surface for the confined rock masses. 
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Therefore numerical modeling is an important tool to study and analise the response of the jointed 

rock masses. The presence of joints and cracks makes the response scale dependent. This means 

that the effective mechanical properties of the media will depend on the size of the problem. One 

of the key questions is how to scale these properties from the lab sample size to the inSitu one. In 

the present study we apply explicit models for the joints to derive these scaling rules for the 

homogenized model of the jointed media. There are different methods to model jointed media. 

One of the most popular method used in rock mechanics is the DEM where the blocks of the rock 

and joints are modeled separately (Cundall [1992]). The DEM approach is very expensive 

computationally but can be used to calibrate phemenological continuum models for in situ blocky 

rock masses. The advantage of DEM methods is that it can deal with large deformations of the 

rock masses (block separation,splitting etc) in a natural way. The disadvantages of DEM methods 

include difficulties in modeling nonpersistent joints and cracks. Alternative methods to model 

discontinuos media include the discrete-continuum approach Lin [2006], XFEM (Belytschko et 

al [2007]) where the finite elements containing the joints are treated in a special way, the thin 

elements used to model joints (Desai [1984];Wang [2003]), and numerous analitical methods 

developed in assumption of linear elastic media (Gerrard [1982];Fossum [1985];Cai [1992]).

In the present work we intend to study rock response at high confinements where both the 

joints and the material show strongly nonlinear behaviour and large deformation. Therefore using 

contact algorithms such as simple common plane (Vorobiev [2007]) seems to be a more robust 

method compared to the schemes employing connected elements.

For large scale simulations it is not practical to count every single joint in the problem 

explicitly. When the wave length is much bigger than the joint spacing it may be appropriate to 

use homogenization techniques to derive equivalent properties for the rock mass. The basis of the 

homogenized inSitu model is the model based on isotropic plasticity theory (Vorobiev O. Yu., 

Liu B.T. et al [2007]) which describes triaxial tests for the intact rock samples. It is known that 

the rock properties may vary significantly from sample to sample. Therefore it is important to 
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parametrize the key model parameters such as Unconfined Compressive Strength (UCS), the 

initial bulk modulus, the crush pressure in order to capture this variability. One example of such 

parametrization is given in Aubertin [2004] where the yield surface is scaled down with increased 

porosity. In the current model not only the yield surface but also the elastic moduli depend on the 

reference porosity of the rock. To extend the model from the intact sample scale to the inSitu 

scale one can use empirical rules such as (Hoek and Brown [1998]) or find the scaling rules from 

the direct explicit simulation of the jointed media. In rock mechanics it is common to use rock 

mass characterization indices such as GSI,RMS etc based on visual observations. Empirical 

failure surfaces are often expressed in terms of these indices. However, most of these criteria do 

not address postfailure behaviour and are used for quasistatic problems of rock engineering. 

Recently attempts were made to extend the GSI qualification system to the residual strength of 

rocks (Cai [2007];Tiwari [2006]). The current approach offers an option to rely on these 

empirical scaling rules as first order estimates when homogenized model is used for the large 

scale calculations.

Equivalent continuum approach is widely used in practical analisys of heavily jointed 

rock masses. In some codes depending on the joint number and orientation different effective 

mechanical properties can be calculated within each finite element. Most of these models assume 

that the element size should be bigger than some Representative Volume Element (REV) (Cai 

[1992]). But some (Pariseau [1999];Zhu [1993]) can handle individual joints as well. The 

NRVE(non-representative volume element approach (Pariseau [1999]) keeps track of the local 

strains for all materials within the element and calculates average stresses using so called ``strain 

influence matrix'' describing partitioning of deformations amoung the materials. In both NRVE 

and REV methods mentioned above the rocks and joints are generally represented by linear 

elastic materials and thus can be only applied for small deformations.

The objective of this paper is to develop a methodology to model nonlinear dynamic 

response for in situ rock masses. The in situ model is build as an extension of the model for intact 
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rock samples (Vorobiev O. Yu., Liu B.T. et al  [2007]) with scaled down strength and elastic 

properties. The scaling can be done according to the Hoek-Brown empirical rule using GSI index 

characterizing the rock mass quality. The model is designed for wide range of loads from quasi-

static triaxial test modeling to the shock wave loading. Continuum model is compared with 

explicitly modeled jointed media where the joints are modeled using advanced contact detection 

described in Vorobiev [2007]. This comparison allows us to study the correlation between 

effective elastic moduli and the strength of the rock masses for a wide range of loading 

conditions.

2. Model for intact material 

2.1. Basic equations

The thermomechanical structure of the model is based on the developments in (Rubin et 

al [1996];Rubin et al [2000]). Within this context, an elemental volume dv of the porous material

in the present configuration expresses as the sum of solid volume and pore volume , such that 

,=,= psps dVdVdVdvdvdv ++ (1)

where },,{ ps dVdVdV are the values of },,{ ps dvdvdv , respectively, in a fixed reference 

configuration. The porosity φ and its reference value Φ are defined by 

dV
dV

dv
dv pp =,= Φφ (2)

The total dilatation, J , and the average dilatation of the solid, sJ , are defined by 

J
dV
dvJ

dV
dvJ

s

s
s 








Φ−
−

1
1==,= φ

(3)

The elastic response of the solid is characterized by the dilatation, sJ , in Eq.(3) where 
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the total dilatation, J , is determined by the evolution equation 
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A symmetric unimodular tensor eB ′ is used as a measure of pure elastic distortion in the 

evolution equation 
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where the tensor, pA , characterizes the direction and magnitude of inelasticity for 

distortional response and pΓ requires an additional constitutive equation, (see Rubin [2000] for 

example.)

In contrast to many other purely mechanical models used for rocks and geologic 

materials (see for example, Fossum [2004];Shao [1991];Xie [2006]) the current model is a 

thermo-mechanical one. It is derived from the assumption that the Helmholtz free energy Ψ is a 

function of the variables sJ , an invariant IBe •'=1α of eB ′ and temperature Θ : 

( ) 3))(,(
2
1),(ˆ=,, 1010 −Θ+ΘΨΘΨ αραρ ssssss JGJJ (6)

If we neglect a small terms in pressure related to 1α then the stress tensor T can be

expressed as:

,),(=,=,)(1=,= 1
0 es BTTIT ′′

−
′ Θ

∂
Ψ∂

−
∂
∂

−−′+− ss
s

sss JGJ
J

pp
J

Jpp ρφφ (7)

where p is the pressure, T′ is the deviatoric part of the stress, '′eB is the deviatoric 

part of 'eB and sp and sT ′ are the pressure and deviatoric stress of the solid matrix, respectively. 

The solid pressure can be defined,for example,with Mie-Gruneisen equation of state as
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εγρρ 0)(= sscs pp + (8)

The reference curve )( scp ρ is derived from shock experiments or approximations of the 

cold curve, ε is specific internal energy and γ is Gruneisen coefficient.

2.2. Elastic properties and poroelasticity

Experimental data on hydrostatic compression of porous rocks show nonlinear elastic 

response up to 10-100 MPa (Vajdova [2004]). This response can be attributed to the elastic 

closing of the microcracks. To model such nonlinear response we introduce poroelasticity effect 

by expressing the porosity as a function of J and a history dependent unloaded porosity uφ as

),(1,=)(,
1
1=,1)/)()(1(=,
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aminaJJJax

x
x

u
u

uu
u φφ
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where 0a is the material constant. The unloaded porosity uφ describes the porosity that 

would exist if the material was unloaded from the current state. This formulation provides right 

asymptotic behavior and can be shown to satisfy the second law of thermodynamics if coupled 

with the evolution equations for uφ described later. Compared with the function used in Rubin 

[1996], the advantage of Eq.(9) is that it allows to calculate unloaded porosity at given porosity 

and compression analytically. Using Eq.(7) and Eq.(9) the bulk modulus can be written as
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In unloaded state, where 1/0,0, →→→ JJxp us , the initial bulk modulus 0K is equal 

to a fraction of the solid modulus sK as

s

s
sss J

PJKaKK
∂
∂

−Φ−Φ−→ =,))()(1(1 2
0 (11)

Initial bulk modulus shows a good correlation with the porosity of the rock. Experimental 

data from Vajdova [2004] are shown in Figure 1 together with the model calculations using Eq

(11). 

 
Figure 1 Porosity - initial bulk modulus correlation for the limestones. The solid line is the results for 

the current model, the dashed lines are predictions with Walsh model (Walsh [1965]) using two

different Poisson ratios. 

Bulk modulus reduction with porosity can be explained with a simple model (Walsh 
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[1965]) considering an elastic matrix embedded with spherical pores. According to that model 

effective compressibility of the rock is expressed as

,
))(122(1

)3(111=1

0








Φ−−

Φ−
+

ν
ν

sKK
(12)

where ν is the Poisson ratio.

Figure 2 Porosity - crush pressure correlation for the limestones.

The initial value of the crush pressure, cP depends on the porosity as well as the grain 

size. Hertzian fracture model relates the onset of the grain crushing with the porosity as

,
)()2(1

)(12.2= 3/232

322

cE
KP IC

c Φ−
−

ν
ν

(13)
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where c is the length of preexisting crack and ICK is the fracture toughness coefficient. 

It is reasonable to assume that the crack length c in Eq.(13) is proportional to the grain size. This 

explains the observed dependence of cP on the product of the grain size and porosity for the 

limestones (Vajdova [2004]) and the sandstones (Wong [1997]).

Information on grain size is not easily available but very often low-porosity samples have 

smaller grain size than more porous ones. Therefore it is reasonable to use porosity correlation for 

cP .

Figure 2 shows the correlation between the porosity of the limestone samples and the 

value of cP measured in hydrostatic compression tests. It is interesting to note that since both cP

and the initial bulk modulus 0K decrease with porosity, the strain to compaction, cµ , defined as 

0

=
K
Pc

cµ may not be sensitive to the porosity. For example, for the limestones with 7.5-15% 

porosity 0.0010.01= ±cµ . Therefore the current model uses )(Φcµ correlation function for 

the input.

2.3. Yield Surface

The current model introduces three pressure dependent surfaces that govern the material 

response during yielding: the initial yield surface (onset of yield), )(0 pY , the failure surface, 

)( pY f , and the residual surface )( pYr ( see Figure 3).
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Figure 3. Yield surfaces in Y-P plane. The cap is calculated for three different values of r 
parameter. The pressure corresponding to the beginning of compaction in hydrostatic conditions

)(ΦcP is defined by the compaction curve.  

The yield strength corresponding to a generalized triaxial compression state, TXCY , is 

derived from 0Y , fY , and rY such that

( ) )()(1)()(1)(=)( 0 pYpYpYpY rhfhTXC Ω+Ω−−+ δδ (14)

The equivalent plastic strain pε , determined by integrating the following evolution 

equation
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is used to define a hardening parameter hδ as 

,=
hardp

p
h εε

ε
δ

+
(16)

where hardε is a constant.

We use a measure of damage, Ω expressed through the history variable 2φ , the total 

amount of bulking porosity (dilatancy) generated in the material, as

1,,0
1

=
2

2 ≤Ω≤
〉−〈+

〉−〈
Ω

D
D

cr

cr

φφ
φφ

(17)

where D is the rate of softening and crφ is a threshold value of porosity. As damage 

accumulates during loading, the material softens and its strength approaches the residual curve

})(),({=)(
0

000 P
pPYpYminpYr (18)

The initial yield surface is expressed in the form

1,,0
)(1

/1)(=)(0 ≤≤







Φ−

− CPppCYpY
r

c
f ξ

(19)

where C and r are constants.Compaction pressure ),( JPc Φ changes as porosity is 

compacted.

Model parameter r controls the shape of the cap. Figure 3 shows three initial yield 

surfaces calculated with r=0.5, r=0.8 and r=1 as well as experimental initial yield points for 

Indiana and Tavel limestones. The values 0.5≤r give the cap with an infinite slope at 0= cPP , 
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where 0cP is the pressure corresponding to the onset of compaction.

Function )(Φξ is defined as 

)()(
)()(==)(

00 ΦΦ
ΦΦ

Φ
K

RY
P
P

c

BDc

c

BD

µ
ξ (20)

where )(ΦBDR is the ratio of the brittle-ductile transition pressure to the unconfined 

compressive strength. If no data available for BDR it can be estimated from the intersection of 

Mogi line (Mogi [1974]) with the onset curve )( pCY f .

The ultimate strength function, )( pY f is based on the H&B strength criterion (Hoek and 

Brown [1998]) that relates the maximum ( 1σ ) and minimum ( 3σ ) principal stress on the failure 

surface as

n

c
c s

Y
mY 








++ 3

31 = σσσ (21)

For most rocks 
2
1

is a reasonable value for n . Parameter s is equal to unity for intact 

material and less than unity for in situ material. Hoek [1998] gives an empirical relationship 

between the coefficients, s and m and the Geologic Strength Index (GSI)







 −







 −

28
100=,

9
100= GSIexpmmGSIexps i (22)

In Eq(22), im is the value of m for intact rock; it can be obtained from static lab tests. 
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For triaxial compression with fe Y=σ , the principal stresses 1σ and 3σ are given by

,
3

=,= 331
f

f

Y
pY −− σσσ (23)

so that the H&B function (12) yields
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When n=0.5, Eq.(23) becomes a quadratic equation and the failure strength fY can be 

expressed in terms of pressure and unconfined compressive strength cY as

636
=

2 m
Y
mpmsYY

c
cf −++ (25)(26)

Equation(26) may not be flexible enough to describe uniaxial strength both in 

compression and tension. Therefore the following, more general function is used 
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ctt
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f YYR
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+ β
β

β
(28)

For the inSitu material the value of unconfined compressive strength is 

SRFYY c
inSitu

c = (29)

where the strength reduction factor, SRF , is nsSRF = . The value of cY for the intact 

material can be found from unconfined compressive tests. According to ``sliding wing crack 

theory''  it can be expressed as

c
KY IC

c πµµ −+ 21
6= (30)

where c is the average length of preexisting cracks (Baud [2000]). It is reasonable to 

assume that c is of the order of the average grain size. Generally, less porous rocks have smaller 

grain size, so the value of cY decreases with porosity for the same type of rocks. Beside the grain 

size the strength of sedimentary rocks has been found to depend on other factors such as the 

amount of calcite, the texture, pores distribution (Torok [2006]). This means that for each data set 

one should  use a specific correlation which takes these factors into consideration. Review of 

empirical correlations between strength and porosity can be found in Chang [2006].

Figure 4 shows the exponential correlation function used in the model and some 

experimental points.
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Figure 4. Correlation between Yc and the reference porosity for various sedimentary rocks.
The points are the experimental data (Vajdova [2004];Torok [2006]), the solid lines are exponential 
fits to two different sets of data for the limestones, the dashed line is the empirical correlation used 
for the  sandstones (Vernik [1993]) and the stars are the data for various sandstones (Cuss [2003])

The final yield surface including loading direction effects takes the form 

)()(= βFpYY TXC (31)

where )(βF is a function of the lode angle described in Rubin et al[2000].

2.4. Porous compaction and dilation

The evolution equation for the unloaded porosity uφ is similar to one described in

(Vorobiev O. Yu., Liu B.T. et al  [2007]). For simplicity, we assume that there is no rate 

dependence. The unloaded porosity is found as 

〉Φ−−+−〈Φ−Φ−Φ )(1/))(1(= cbseu JS µµµµφ (32)
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The shifts esb µµµ ,, model effects of bulking, shear enhanced compaction and heating. 

The value of eµ can be found be inverting EOS as 

( )sse p ρεµ ∂∂Φ− /)(1/= (33)

The bulking shift bµ is proportional to the amount of produced bulking porosity as 

))(1(
= 2

Φ−ΦSb
φγµ (34)

The bulking porosity 2φ is a history variable decribing extra porosity produced due to 

dilatancy for all times using the following equation: 

)(1/
/1

/
= 10

2 φεφ −〉〈
〉〈+

〉〈+
pdpdY

dpdY
dpdYAA

&& (35)

Because the rate of bulking  is proportional to the positive slope of the yield surface, the 

dilatancy and the brittle response take place only at low confinements where the cap is not 

applied. 

The shear-enhanced compaction shift is expressed as 

r

f

ec
s pCYK

P
1/
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)(1)(= 










−

Φ σξµ (36)

where eσ is the current Von Mises Stress, K is the current bulk modulus and cP is the 

current compaction pressure found as 
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The rate of compaction is defined by the slope S which in turn depends on the amount 

of the shear-enhanced compaction shift, sµ , as 

))(1(
)(=)(

0

0

Φ−Φ+Φ
ΦΦ

Φ
S
SS

sµ
(38)
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where )(0 ΦS is the compaction slope for hydrostatic condition defined as a function of 

the reference porosity. The function )(0 ΦS is fitted by modeling hydrostatic compressions of 

intact rocks with different porosity.

When the unloading porosity is calculated the porosity is found using Eq.(9) and used for 

the pressure calculation in Eq.(7)

3. Model extension for insitu rocks

The presents of joints makes inSitu rock mass weaker. It has been found that both elastic 

moduli and the unconfined compressive strength decrease for low-qulity rock masses. Numerous 

empirical equations has been derived for predictions of rock moduli based on parameters defining 

the quality of rock mass such as RMR,Q,GSI (Sonmez [2006];Singh [2005];Hoek [2002]). We 

will assume that in-situ-to-intact elastic modulus ratio, F , and the strength reduction factor, 

SRF , are related as αFSRF = . Where α is the coefficient to be found. The values for α

suggested by different researchers vary from 0.56,0.72 in Sing [2005] to 2.5 in Sonmez [2006].

One should note, that the joint orientation were not random for the cases considered by the 

researches mentioned above.

The initial bulk modulus for the in situ rock is matched by enhancing poroelaticity 

parameter a to satisfy the given modulus ratio F. In addition to that two main parameters for 

porous compaction, strain to crush and the compactions slope, are adjusted to match the results of 

explicit simulations.The model parameters used for the limestone are given in the Table 1.

Table 1 Model parameters for the limestones 

 Input 

functions 

Values Description 

),( Fa Φ )(11 0 Φ−− aF poroelasticity function a
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0a 1.3 poroelasticity parameter

)(Fs nF /α , 2=α HB scale factor

)(Fm
n

i Fm 28
9α

, 8=im
HB parameter

)(ΦcY )15(0.6 Φ−exp GPa unconfined compressive strength

)(ΦtY )3(0.01 Φ−exp GPa unconfined tensile strength

C 0.99 

0Y
Y f ratio 

n 0.5 HB power exponent

r 1 power exponent for the cap 

)(Φcµ

2.0,
1

)()(

)15exp(005.0)(

1
1

1
0

0

=
+
+

Φ=Φ

Φ−=Φ

ξ
ξ
ξ

µµ

µ

Fcc

c

strain to crush

)(ΦBDR 3.0)40(2 +Φ−exp Brittle-Ductile transition ratio

sK 81 GPa solid bulk modulus 

ν 0.25 Poisson ratio 

)(0 ΦS

4.0,
)1(1

)(
)(

)8(1)(

2
2

00
0

00

=
−+

Φ
=Φ

Φ−−=Φ

ξ
ξ F
S

S

expS compaction slope

D 150 softening rate

crφ 0.001 critical bulking porosity

hardε 0.06 hardening strain

γ 1. Gruneisen parameter
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γ 0.2 fraction of recompacted bulking porosity

1A 0.5 degree of associativity at low pressures

0A 0.5 degree of associativity at high pressures

4. Explicit modeling of jointed rock

Now, when we have a phemenological model with scaling parameters to account for the 

presence of joints we need some additional information to relate these parameters with 

characteristics of the joints. Since both intact rock and joints show strongly non-linear response,

which is difficult to study analytically we need a numerical model for the jointed rock.

4.1. The joint model

It is know from experimental observations that the joint normal closure is a non-linear 

function of the applied normal stress resembling a hyperbola (Bandis [1983]). Therefore the 

normal modulus of the joint, E , can be expressed as 

2

2

)(
=

max
j ua

aEE
−

(39)

where maxu is the maximum joint closure for all times.

The normal force nF and the shear force sF are incremented proportionally to the 

respective moduli E and G as 

aGAFaEAF sjcanjcn /=/= ∆∆∆∆ (40)

where cA is the area of contact and sn ∆∆ , are the normal and the shear displacement 

increments. The shear forces are limited by the yield surface dependent on the normal force as 

µσ nccohsmax FAF += (41)
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where cohσ is the shear cohesion and µ is the friction coefficient related to the friction 

angle as )(= ϕµ tan .

Anytime the yield surface is applied to restrict the shear force, the shear slip spu is 

accumulated as 

cj

smaxs
sp AG

FFu 〉−〈
∆

||= (42)

The friction coefficient is changing with the amount of shear slip to account for the 

softening effects as 

〉−〈−+
0

0 1)(=
sp

sp
rr u

u
µµµµ (43)

where 0µ and rµ are the initial and the residual friction angles, and 0spu is the critical 

shear slip.

To account for joint dilation due to shear slip, the normal forces can be adjusted anytime 

the shear slip is incremented as

sp
crit

n
cn utan

F
FEAF ∆Ψ〉−〈∆ )(1= (44)

where Ψ is the dilation angle and critF is the critical normal force above which dilation 

will not occur. The details of the numerical implementation are described in Vorobiev [2007]. 

The values of the parameters for the joint model used in calculations are listed in the Table 2.

Table 2 Parameters for the joint model 

 Parameter Values Description 

a 0.01 mm the aperture 
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jE 0.5 GPa normal modulus

jG 0.5 GPa shear modulus 

Ψ 0 dilation angle

rµ atan(30); residual friction

0µ atan(30); initial friction

cohσ 0.0001 GPa cohesion shear stress

0spu 10 critical slip

critF ∝ critical normal force

4.2. Numerical approach

A generic velocity boundary condition was applied to the boundary nodes of a group of 

elements. This boundary condition is described by a reference point 0R
r

inside the group and the 

evolution functions for the components of a symmetric velocity gradient tensor D Thus the 

velocity vector for any boundary node was defined as )RR(D(t)=V 0

rrr
−• Volume average 

stress tensor was calculated for the group for each time step. The loading rate was slow enough to 

ensure quasi-equilibrium conditions. To reduce oscillations due to running waves, static damping 

was applied. The explicit finite-difference code GEODYN-L was used to update the elements. 

The joints between the elements were modeled using Simple Common Plane contact algorithm 

described in Vorobiev [2007].

4.3. Uniaxial compression simulation for a single joint set

To test the method a uniaxial strain compression was appled to a single layer of jointed 
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elements. Assuming a linear response of the solid and nonlinear hyperbolic stiffening of the joints 

described by Eq.(39) gives the following relationship between the axial stress, AT , and the axial 

strain, Aε :
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where a is tha aperture, d is the joint spacing, jE initial joint normal modulus and sE

is the solid modulus. This equation assumes that the deformation is normal to the joint. Figure 5

shows comparison between the analytical expression and the numerical results. For the same joint 

stiffness, aperture and spacing the numerical results agree with the analytical (dashed curve 1 vs 

solid line) until the onset of porous compaction not accounted for by the analitical model.

Figure 5 Comparison of the Axial Stress calculated during the uniaxial loading with analytical 

solutions (dashed lines) for various joint stiffnesses and spacing.
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It follows from Eq.(39) that the effective initial modulus is
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The initial modulus is controlled both by the joint stiffness and the ratio of the aperture to 

the joint spacing, which is the measure of extra porosity introduced by the joints (the joint 

porosity).

4.4. Simulations of randomly jointed volumes

Since the constitutive model for the InSitu material is isotropic we need to distribute the 

joints randomly to have an isotropic response for the volume. The following method was used to 

generate volumes of jointed elements. A cube (volume I) or a sphere (volumes II and III) were

meshed using CUBIT meshing tool (Blacker [1994]). Then each element was decoupled from the 

mesh to represent a block and then subdiscretized into a number of hexahedral elements. Contacts 

were set between the blocks at the faces of the boundary elements. Resulting angular distributions 

for the joints were not perfectly random. The least random distribution was found for the sphere 

with hexahedral blocks. This is because the kernal of the mesh was a cube. The best angular 

distribution was found for the spherical assembly of tetrahedral blocks (see Figure 7).

Figure 6 Volumes of jointed elements used in calculations: Volume I-cubical assembly of 
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tetrahedral blocks subdistretized into hex elements;Volume II -spherical assembly of tetrahedral 
blocks subdistretized into hex elements; Volume III- spherical assembly of hexahedral blocks 
subdistretized into smaller hex elements;

Figure 7 Distribution of joints plotted in area preserving Hammer-Aitoff projection for the 
spherical assemble of hexahedral blocks. Each boundary face is represented as two dots 
corresponding to the vectors pointing to either side of the face.

To find the constrained modulus for the assembly a uniaxial strain load was applied. The resultant 

slope between the average stress and the strain gave the effective constrained modulus for the 

system. Additional biaxial strain loading was applied to find unconfined compressive strength 

(UCS). The value of UCS was defined at the point of intersection of the uniaxial stress path and 

the path for the biaxial loading. Figure 8 shows correlations between the calculated constrained 

modulus ratios and the UCS for various jointed volumes. Each point shown in Figure 8 was 

defined by two independent runs corresponding to the uniaxial load (to find the modulus ratio) 

and a biaxial load (to find the ultimate yield surface and UCS) for a particular jointed volume. 

Proposed correlation function for randomly jointed volumes is shown with a dashed curve. It is 

known, that the strength of the jointed media depends not only on the joint spacing or the joint 

properties but also on the persistency of the joints. In the present work this factor was not studied.

Figure 9 shows response of the shperical assembly of tetrahedral blocks in hydrostatic 

compression. Both loading and unloading paths are shown for various values of the joint aperture. 
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The less is the aperture the stiffer is the response. Since the joints have a histeresis in load-unload 

cycles this property is inhereted by the jointed volume. In the current inSitu model this property is 

not captured since for the elastic deformations loads and unloads follow the same path. The 

apparent compaction slope changes with increased joint porosity due to increased poroelasticity 

of the joints. Figure 10 shows comparison of the explicit results with the homogenized model for 

the hydrostatic compaction. 

The modulus ration parameter F was chosen to match the initial bulk modulus to the 

results of the explicit simulations for the spherical assemble of tetrahedral blocks.

Figure 8. Calculated Unconfined Compressive Strength ratio as a function of the constrained 
modulus ratio  
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Figure 9 Hydrostatic compression (load – unload) for the spherical assembly of tetrahedral blocks 

with different joint properties. The bold line shows results for the solid volume (without joints). 
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Figure 10 Comparison of the homogenized model (solid lines) with the explicit calculations of 

hydrostatic compression (markers)

Equation (46) describing effect of a single joint can be generalized for multiple randomly oriented 

joints as 

∑=
+ cj

jssj
js AaV

VKVE
VEKK ,=0 (47)

This fomular assumes that the total compressibilty of the volume is a weighted sum of solid and 

joint compressibilities where the weights are the volumes occupied by the solid and the joints 

respectively. The volume occupied by the joints is calculated as the product of the joint apperture 

a and the sum of all contact areas ∑ cA . Figure 11 compares the initial part of Pressure-Volume 

curves generated for hydrostatic compression and the straight lines with the slopes calculated

using this formula. It is seen from the picture that for low joint porosities Eq (47) gives desent 
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predictions for  the effective initial bulk modulus. Earlier Fossum [1985] derived the following 

formula for the average bulk modulus in a randomly jointed elastic media
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where s is an average joint spacing and ν is the Poisson ratio. In the case of very small joint 

spacing Eq (48) gives the following limit
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According to Eq (49) the minimum initial bulk modulus depends on the Poisson ratio. For 

ν=0.35, the solid area between two dotted lines in Figure 11 determins the range of slopes 

predicted by the formula (48). It is clear that Eq(48) overestimates the bulk modulus if the 

Poisson ratio remains unchanged. On the other hand there is no recipe given in Fossum [1985] on 

how to degrade the Poisson ratio for the jointed media.



29

Figure 11 Average stress vs volumetric strain calculated for hydrostatic compression

5. Conclusions

The new parameterized model has been designed for large scale simulations involving 

rock masses with variable porosity fields and variable GSI index. It is assumed that joints are 

randomly oriented and the yield surface for the in situ material is found as a scaled yield surface 

for the intact material. As an alternative to the Hoek-Brown scaling the effective properties of 

heavily jointed rocks can be found numerically in explicit calculations if both the joint and the 

solid responses are known.

In many practical cases the joints may have preffered orientations resulting in anisotropic 

response for the rock mass. To model these cases anisotropic extensions of the current model are

nessesary. This is the subject of our future work. The main goal of the present work is to develop 

thermodynamic framework for homogenized model for jointed rock masses as well as the 

methodology to derive the key model parameters from the data measured in experiments and 
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from the explicit simulations.
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